Advanced Ceramics
ceramics
advanced ceramics, substances and processes used in the development and manufacture of ceramic materials that exhibit special properties.
Ceramics, as is pointed out in the article ceramic composition and properties, are traditionally described as inorganic, nonmetallic solids that are prepared from powdered materials, are fabricated into products through the application of heat, and display such characteristic properties as hardness, strength, low electrical conductivity, and brittleness. Advanced ceramics represent an “advancement” over this traditional definition. Through the application of a modern materials science approach, new materials or new combinations of existing materials have been designed that exhibit surprising variations on the properties traditionally ascribed to ceramics. As a result, there are now ceramic products that are as tough and electrically conductive as some metals. Developments in advanced ceramic processing continue at a rapid pace, constituting what can be considered a revolution in the kind of materials and properties obtained.
With the development of advanced ceramics, a more detailed, “advanced” definition of the material is required. This definition has been supplied by the 1993 Versailles Project on Advanced Materials and Standards (VAMAS), which described an advanced ceramic as “an inorganic, nonmetallic (ceramic), basically crystalline material of rigorously controlled composition and manufactured with detailed regulation from highly refined and/or characterized raw materials giving precisely specified attributes.” A number of distinguishing features of advanced ceramics are pointed out in this definition. First, they tend to lack a glassy component; i.e., they are “basically crystalline.” Second, microstructures are usually highly engineered, meaning that grain sizes, grain shapes, porosity, and phase distributions (for instance, the arrangements of second phases such as whiskers and fibres) are carefully planned and controlled. Such planning and control require “detailed regulation” of composition and processing, with “clean-room” processing being the norm and pure synthetic compounds rather than naturally occurring raw materials being used as precursors in manufacturing. Finally, advanced ceramics tend to exhibit unique or superior functional attributes that can be “precisely specified” by careful processing and quality control. Examples include unique electrical properties such as superconductivity or superior mechanical properties such as enhanced toughness or high-temperature strength. Because of the attention to microstructural design and processing control, advanced ceramics often are high value-added products.
Advanced ceramics are referred to in various parts of the world as technical ceramics, high-tech ceramics, and high-performance ceramics. The terms engineering ceramics and fine ceramics are used in the United Kingdom and Japan, respectively. In this article the term advanced ceramics is used in order to distinguish the material from traditional ceramics, a category of industrial ceramics based on raw materials that are fabricated into products with comparatively little alteration from their natural state. The manufacture of traditional ceramics is covered in the article traditional ceramics.
This article focuses on the types of chemical precursors and processing techniques employed in the manufacture of all advanced ceramic products.
What's Your Reaction?