Combinatorics

mathematics

Oct 10, 2023 - 12:12
 0  17

Figure 1: Ferrers' partitioning diagram for 14.

combinatorics, also called combinatorial mathematics, the field of mathematics concerned with problems of selection, arrangement, and operation within a finite or discrete system. Included is the closely related area of combinatorial geometry.

One of the basic problems of combinatorics is to determine the number of possible configurations (e.g., graphs, designs, arrays) of a given type. Even when the rules specifying the configuration are relatively simple, enumeration may sometimes present formidable difficulties. The mathematician may have to be content with finding an approximate answer or at least a good lower and upper bound.

In mathematics, generally, an entity is said to “exist” if a mathematical example satisfies the abstract properties that define the entity. In this sense it may not be apparent that even a single configuration with certain specified properties exists. This situation gives rise to problems of existence and construction. There is again an important class of theorems that guarantee the existence of certain choices under appropriate hypotheses. Besides their intrinsic interest, these theorems may be used as existence theorems in various combinatorial problems.

Finally, there are problems of optimization. As an example, a function f, the economic function, assigns the numerical value f(x) to any configuration x with certain specified properties. In this case the problem is to choose a configuration x0 that minimizes f(x) or makes it ε = minimal—that is, for any number ε > 0, f(x0) f(x) + ε, for all configurations x, with the specified properties.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow

admin https://www.piguhua.com