Geoengineering
Definitions, Examples, & Technologies
geoengineering, the large-scale manipulation of a specific process central to controlling Earth’s climate for the purpose of obtaining a specific benefit. Global climate is controlled by the amount of solar radiation received by Earth and also by the fate of this energy within the Earth system—that is, how much is absorbed by Earth’s surface and how much is reflected or reradiated back into space. The reflectance of solar radiation is controlled by several mechanisms, including Earth’s surface albedo and cloud coverage and the presence in the atmosphere of greenhouse gases such as carbon dioxide (CO2). If geoengineering proposals are to influence global climate in any meaningful way, they must intentionally alter the relative influence of one of these controlling mechanisms.
cloud-seeding aircraft
Geoengineering proposals were first developed in the middle of the 20th century. Relying on technologies developed during World War II, such proposals were designed to alter weather systems in order to obtain more favourable climate conditions on a regional scale. One of the best-known techniques is cloud seeding, a process that attempts to bring rain to parched farmland by dispersing particles of silver iodide or solid carbon dioxide into rain-bearing clouds. Cloud seeding has also been used in attempts to weaken tropical storms. In addition, the U.S. military suggested that nuclear weapons might be used as tools to alter regional climates and make certain areas of the world more favourable for human habitation. This proposal, however, was not tested.
Cloud seeding works on a regional scale, seeking to influence weather systems for the benefit of agriculture. Present-day geoengineering proposals have focused on the global scale, particularly as evidence has mounted of increasing atmospheric CO2 concentrations and thus the prospect of global warming. Two fundamentally different approaches to the problem of global climate change have arisen. The first approach proposes the use of technologies that would increase the reflectance of incoming solar radiation, thus reducing the heating effect of sunlight upon Earth’s surface and lower atmosphere. However, altering Earth’s heat budget by reflecting more sunlight back into space might offset rising temperatures but would do nothing to counter the rising concentration of CO2 in Earth’s atmosphere. The second geoengineering approach focuses on this problem, proposing to remove CO2 from the air and store it in areas where it cannot interact with Earth’s atmosphere. This approach is more appealing than the first because it has the potential to counteract both rising temperatures and rising carbon dioxide levels. In addition, reducing CO2 in the air could address the problem of ocean acidification. Vast amounts of atmospheric CO2 are taken up by the oceans and mixed with seawater to form carbonic acid (H2CO3). As the amount of carbonic acid rises in the ocean, it lowers the pH of seawater. Such ocean acidification could result in damage to coral reefs and other calcareous organisms such as sea urchins. Reducing the concentration of CO2 would slow and perhaps eventually halt the production of carbonic acid, which in turn would reduce ocean acidification.
To some scientists, global-scale geoengineering proposals border on science fiction. Geoengineering is also controversial because it aims to modify global climate—a phenomenon that is not yet fully understood and cannot be altered without risk. In the popular press there have been reports that view geoengineering as the final option to thwart climate change if all other measures to reduce CO2 emissions fail in the coming decades. Several studies advocate that rigorous testing should precede the implementation of any geoengineering proposal so that unintended consequences would be avoided. Each proposal described below would differ from the others in its potential efficiency, complexity, cost, safety considerations, and unknown effects on the planet, and all of them should be thoroughly evaluated before being implemented. Despite this, no proposed scheme has been purposefully tested, even as a small-scale pilot study, and hence the efficiency, cost, safety, or timescale of any scheme has never been evaluated.
What's Your Reaction?