Differential Geometry
differential geometry, branch of mathematics that studies the geometry of curves, surfaces, and manifolds (the higher-dimensional analogs of surfaces). The discipline owes its name to its use of ideas and techniques from differential calculus, though the modern subject often uses algebraic and purely geometric techniques instead. Although basic definitions, notations, and analytic descriptions vary widely, the following geometric questions prevail: How does one measure the curvature of a curve within a surface (intrinsic) versus within the encompassing space (extrinsic)line?
While curves had been studied since antiquity, the discovery of calculus in the 17th century opened up the study of more complicated plane curves—such as those produced by the French mathematician René Descartes (1596–1650) with his “compass” (see History of geometry: Cartesian geometry). In particular, integral calculus led to general solutions of the ancient problems of finding the arc length of plane curves and the area of plane figures. This in turn opened the stage to the investigation of curves and surfaces in space—an investigation that was the start of differential geometry.
Some of the fundamental ideas of differential geometry can be illustrated by the strake, a spiraling strip often designed by engineers to give structural support to large metal cylinders such as smokestacks. A strake can be formed by cutting an annular strip (the region between two concentric circles) from a flat sheet of steel and then bending it into a helix that spirals around the cylinder, as illustrated in the figure. What should the radius r of the annulus be to produce the best fit? Differential geometry supplies the solution to this problem by defining a precise measurement for the curvature of a curve; then r can be adjusted until the curvature of the inside edge of the annulus matches the curvature of the helix.
An important question remains: Can the annular strip be bent, without stretching, so that it forms a strake around the cylinder"intrinsic" href="https://www.merriam-webster.com/dictionary/intrinsic" data-type="MW">intrinsic distances. (For example, because a sheet of paper can be rolled into a tube without stretching, the sheet and tube are “locally” isometric—only locally because new, and possibly shorter, routes are created by connecting the two edges of the paper.) Thus, the second question becomes: Are the annular strip and the strake isometric? To answer this and similar questions, differential geometry developed the notion of the curvature of a surface.
What's Your Reaction?