Projective Geometry
projective geometry, branch of mathematics that deals with the relationships between geometric figures and the images, or mappings, that result from projecting them onto another surface. Common examples of projections are the shadows cast by opaque objects and motion pictures displayed on a screen.
Projective geometry has its origins in the early Italian Renaissance, particularly in the architectural drawings of Filippo Brunelleschi (1377–1446) and Leon Battista Alberti (1404–72), who invented the method of perspective drawing. By this method, as shown in the figure, the eye of the painter is connected to points on the landscape (the horizontal reality plane, RP) by so-called sight lines. The intersection of these sight lines with the vertical picture plane (PP) generates the drawing. Thus, the reality plane is projected onto the picture plane, hence the name projective geometry. See also geometry: Linear perspective.
Although some isolated properties concerning projections were known in antiquity, particularly in the study of optics, it was not until the 17th century that mathematicians returned to the subject. The French mathematicians Girard Desargues (1591–1661) and Blaise Pascal (1623–62) took the first significant steps by examining what properties of figures were preserved (or invariant) under perspective mappings. The subject’s real importance, however, became clear only after 1800 in the works of several other French mathematicians, notably Jean-Victor Poncelet (1788–1867). In general, by ignoring geometric measurements such as distances and angles, projective geometry enables a clearer understanding of some more generic properties of geometric objects. Such insights have since been incorporated in many more advanced areas of mathematics.
What's Your Reaction?