Igneous Rock

Characteristics, Examples, Formation, & Types

Oct 10, 2023 - 22:21
 0  9

temperature of Earth

igneous rock, any of various crystalline or glassy rocks formed by the cooling and solidification of molten earth material. Igneous rocks constitute one of the three principal classes of rocks, the others being metamorphic and sedimentary.

Igneous rocks are formed from the solidification of magma, which is a hot (600 to 1,300 °C, or 1,100 to 2,400 °F) molten or partially molten rock material. Earth is composed predominantly of a large mass of igneous rock with a very thin veneer of weathered material—namely, sedimentary rock. Whereas sedimentary rocks are produced by processes operating mainly at Earth’s surface by the disintegration of mostly older igneous rocks, igneous—and metamorphic—rocks are formed by internal processes that cannot be directly observed and that necessitate the use of physical-chemical arguments to deduce their origins. Because of the high temperatures within Earth, the principles of chemical equilibrium are applicable to the study of igneous and metamorphic rocks, with the latter being restricted to those rocks formed without the direct involvement of magma.

Magma is thought to be generated within the plastic asthenosphere (the layer of partially molten rock underlying Earth’s crust) at a depth below about 60 kilometres (40 miles). Because magma is less dense than the surrounding solid rocks, it rises toward the surface. It may settle within the crust or erupt at the surface from a volcano as a lava flow. Rocks formed from the cooling and solidification of magma deep within the crust are distinct from those erupted at the surface mainly owing to the differences in physical and chemical conditions prevalent in the two environments. Within Earth’s deep crust the temperatures and pressures are much higher than at its surface; consequently, the hot magma cools slowly and crystallizes completely, leaving no trace of the liquid magma. The slow cooling promotes the growth of minerals large enough to be identified visually without the aid of a microscope (called phaneritic, from the Greek phaneros, meaning “visible”). On the other hand, magma erupted at the surface is chilled so quickly that the individual minerals have little or no chance to grow. As a result, the rock is either composed of minerals that can be seen only with the aid of a microscope (called aphanitic, from the Greek aphanēs, meaning “invisible”) or contains no minerals at all (in the latter case, the rock is composed of glass, which is a highly viscous liquid). This results in two groups: (1) plutonic intrusive igneous rocks that solidified deep within the crust and (2) volcanic, or extrusive, igneous rocks formed at Earth’s surface. Some intrusive rocks, known as subvolcanic, were not formed at great depth but were instead injected near the surface where lower temperatures result in a more rapid cooling process; these tend to be aphanitic and are referred to as hypabyssal intrusive rocks.

The deep-seated plutonic rocks can be exposed at the surface for study only after a long period of denudation or by some tectonic forces that push the crust upward or by a combination of the two conditions. (Denudation is the wearing away of the terrestrial surface by processes including weathering and erosion.) Generally, the intrusive rocks have cross-cutting contacts with the country rocks that they have invaded, and in many cases the country rocks show evidence of having been baked and thermally metamorphosed at these contacts. The exposed intrusive rocks are found in a variety of sizes, from small veinlike injections to massive dome-shaped batholiths, which extend for more than 100 square kilometres (40 square miles) and make up the cores of the great mountain ranges.

Extrusive rocks occur in two forms: (1) as lava flows that flood the land surface much like a river and (2) as fragmented pieces of magma of various sizes (pyroclastic materials), which often are blown through the atmosphere and blanket Earth’s surface upon settling. The coarser pyroclastic materials accumulate around the erupting volcano, but the finest pyroclasts can be found as thin layers located hundreds of kilometres from the opening. Most lava flows do not travel far from the volcano, but some low-viscosity flows that erupted from long fissures have accumulated in thick (hundreds of metres) sequences, forming the great plateaus of the world (e.g., the Columbia River plateau of Washington and Oregon and the Deccan plateau in India). Both intrusive and extrusive magmas have played a vital role in the spreading of the ocean basin, in the formation of the oceanic crust, and in the formation of the continental margins. Igneous processes have been active since the onset of the formation of Earth some 4.6 billion years ago. Their emanations have provided the water for the oceans, the gases for the primordial oxygen-free atmosphere, and many valuable mineral deposits.

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow

admin https://www.piguhua.com